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Abstract

Can developing countries benefit from exporting opportunities in the
growing sector of tradable services, given the near free information flow
via the internet and wage differentials relative to developed countries? Fo-
cusing on the software development industry, we analyse data from 2.55
million software projects across 5,400 locations, and estimate an economic
geography model in which locations trade tasks. The results reveal three
factors limiting exports: (i) significant productivity differences within and
between countries; (ii) a notable decline in trade volumes with distance;
(iii) sorting patterns among software developers that are suggestive of brain
drain.
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1 Introduction

Over their development path advanced economies have experienced a
substantial increase in the share of the high-skilled services sector. In the
US, the share of high skilled services exceeds 50% of total value added
(Buera and Kaboski, 2012). Notably, many segments within this sector pro-
duce tradable output. Given that technological advances of recent decades
reduced the cost of digital information flows to near zero, new exporting
opportunities may arise for developing countries, where wages are lower
than in developed countries. Are developing countries in a position to take
advantage of these opportunities? We address this question by employing
novel data that allow us to study the global software development industry,
one of the fastest evolving parts of the high-skilled services sector.

Our main analysis is based on GitHub data from 2.55 million projects
and 2.64 million users, and their interactions. The available data allow us to
observe the locations of users at the city level, their contributions to specific
projects, as well as their follower networks. We employ this information to
construct flows of software code between locations from project level col-
laborations. Based on these flows, we propose a spatial model in the spirit
of Eaton and Kortum (2002), in which software developers in different lo-
cations trade in tasks. By estimating the gravity equation derived from the
model, we recover distance elasticities and productivity parameters at the
city level.

According to our estimations the San Francisco Bay Area emerges as
the unambiguous leader, followed by other cities located on the West Coast
of the US. Among developing countries, the most productive locations are
Bengaluru in India and various cities in Eastern Europe. Overall we find
that there is a tight relationship between our measure and GDP per capita
at the country level, and between per capita nighttime luminosity at the
city level. We also find that estimated productivity differences in the soft-
ware industry between the richest and poorest countries are comparable or
even larger than those derived from macro data encompassing broad sec-
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tors. This means that the poorest countries are performing worse in the pro-
duction of software code than in the production of goods and other services.
Moreover, we construct a separate productivity measure for the generation
of final software products, which presents a higher value activity than pro-
vision of coding services. We find that the comparative advantage in the
generation of final software products relative to coding services increases
with GDP per capita.

Despite the fact that, from a technological perspective, there are no spa-
tial frictions to the trade in software code, our gravity equation estimates
imply that distance has a negative effect on trade volumes. Specifically, our
estimated distance elasticity is in the range of 0.7-0.9, which is compara-
ble in size to the value of 1 obtained for the flow of goods within the US
(Allen and Arkolakis, 2018). Our interpretation of this sizable effect is that
distance affects the movement of people, and the networks in which they
collaborate. The production network is shaped by collaborations formed
through in-person interaction, such that online software production cannot
be understood as a process that operates independently from offline loca-
tion.

We then investigate the migration patterns of IT specialists within and
across countries. In our data we observe the location of these software de-
velopers at different points in time. We construct a proxy for the quality of
their skill set based on the centrality of the software developer in the fol-
lower network of all GitHub users, which we derive through the recursive
ranking algorithm PageRank. We document that there are strong sorting
patterns of migration both within and across countries based on this qual-
ity proxy. For example, we observe that IT specialists who are ranked higher
in a city at time t are more likely to migrate to a more productive city (or
a country with higher GDP per capita) in period t + 1. We further show
that immigrants tend to have higher quality than the median resident in the
destination. These results hold both when migrants move to places that are
rated higher in terms of IT productivity than their origin location, and when
they move to countries with a higher GDP per capita than their country of
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origin.
Taken together, our results suggest that – barring effective policy inter-

ventions – developing countries are unlikely to reap large benefits from soft-
ware code exports for three reasons: First, the ability to export requires high
productivity. However, our estimates show that the productivity gap in the
software development sector between rich and poor countries is of a mag-
nitude comparable or even larger to the gap in the service sector or man-
ufacturing. Second, our estimates show that there are substantial spatial
frictions which hamper trade flows. Third, the migration patterns we doc-
ument indicate that developing countries experience a brain drain, which
may make it harder to catch up with the technological frontier.1

We validate our data in several steps. First, we use two alternative ap-
proaches to measure the role of each location in the software production
process. As one alternative, we construct a graph of locations in the world
which are linked to each other by their observed software code flows. We
again apply PageRank to recursively determine the centrality of each node
(location) in the graph. As another alternative, we aggregate the individual
scores we obtained from applying PageRank to the follower network at the
level of locations. The results obtained according to both of these alterna-
tive approaches are closely correlated with the productivity measures ob-
tained from the structural estimation. Second, we validate our measure for
the US sub-sample by regressing it on wages of US IT specialists obtained
from the American Community Survey at the location level, and for the full
sample by regressing it on wages of IT specialists globally from the Stack
Overflow Developer Survey at the country level. We find an economically
large and statistically strong relationship. Third, we construct university
rankings for the US, the UK and Germany based on individual software de-
velopers’ quality scores and their reported affiliation. The list shows close
resemblance with conventional rankings, such as by US News or the Aca-
demic Ranking of World Universities.

1If migrants also facilitate the diffusion of knowledge to their home countries, then the
negative effects of brain drain would be less severe. We are silent on this channel.

4



For the analysis of the questions we pose, GitHub data have important
advantages over the patent data that have been widely used in the litera-
ture. First, they cover a wide range of countries with varying levels of GDP
per capita, and capture an extensive membership and activity network in
many developing countries, whereas the literature based on patents has fo-
cused on a small set of high income countries. Second, we observe activities
at high frequency levels, while patenting is a relatively rare activity, espe-
cially at the individual level, and many inventors register only one patent
during their lifetime. This makes the analysis of inventor migration compli-
cated because economists observe inventors’ locations only when they reg-
ister a patent, so they need to observe the same inventor registering patents
in different locations to document an event of migration.2 Third, in the
GitHub data joint participation in projects by members located in different
locations is more common, which enables us to study interactions across
space. Finally, software production is relatively less dependent on the in-
vestment of physical capital than other high skilled sectors, and members
of teams are less confined by physical distance; they do not need to be lo-
cated in laboratories with special equipment. Thus, our setting allows us to
focus on the human capital and human interaction aspect of the innovation
process.

There is a large literature that tries to measure productivity levels across
countries (see, for instance, Klenow and Rodrı́guez-Clare, 1997; Hall and
Jones, 1999). Methodologically we follow Waugh (2010) and use a trade
model to recover productivity parameters. In contrast to the aforemen-
tioned papers we focus on one industry, but our productivity measures are
at the city level rather than at the country level. Within this literature, it is
worthwhile emphasizing papers that specifically focus on the level of hu-
man capital. Since software production is human capital intensive and in-
dividuals can provide their services to firms in distant locations, we believe

2For example, in the dataset used by Akcigit, Baslandze, and Stantcheva (2016) 52% of
inventors have only one registered patent. For this reason the authors base their analysis
only on top inventors who register patents frequently.
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that the human capital component in our productivity measure is large.
However, it cannot be interpreted as being a measure of human capital ex-
clusively, because other factors, such as agglomeration forces acting at the
city level, are also included in our estimated productivities. Given the dif-
ficulties related to the measurement of schooling quality, researchers have
used wages of migrants in destination countries to measure human capital
(Clemens, 2013; Hendricks and Schoellman, 2017; Martellini, Schoellman,
and Sockin, 2024). In this literature, researchers rely on wages to obtain
measures of worker quality. However, when transitioning from one location
to another, workers may face imperfect transferability of skills, discrimina-
tion, or lack of local networks. All these factors can lead to lower estimates
of migrants’ true skills. Because our measure is not based on wages, it is
less likely to be affected by those factors, yet still not fully void of them, or
agglomeration effects, as mentioned above.

We also contribute to the literature on trade in services. The decline in
communication costs has lead to an increase in services trade Eckert (2019).
A lack of data, however, makes it difficult for researchers to measure the
extent of such trade flows. Eaton and Kortum (2018), using 2010 interna-
tional bilateral trade data, find a distance elasticity of 1.4 on professional
services and on administrative services. Other studies combine structural
models with industry employment data from the US to generate trade in
services without observing the actual flows (Gervais and Jensen, 2019; Eck-
ert, 2019). Hsieh and Rossi-Hansberg (2023) study trade in non-tradeable
services through the expansion of affiliates.

We structure our paper in the following way: We describe the features of
GitHub data and complementary data sources in Section 2. In Section 3 we
analyze the structure of teams in order to properly construct the information
flows between locations. We describe our spatial equilibrium model and
alternative approaches for calculating city-level productivities in Section 4.
In Section 5 we present the results of our estimations and relate them with
city wages and GDP per capita. In Section 6 we study the migration patterns
of software developers. Section 7 concludes.
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2 Measuring trade in services with GitHub data

Our primary data source is a snapshot of the universe of GitHub users and
their public activity on the platform in March of 2021. We supplement this
with a snapshot of the data from June 2019 to identify changes in the re-
ported location of users in order to study migration patterns.

GitHub is a service for software development and version control. It
is the dominant service for hosting open source software.3 One of the main
advantages of GitHub compared with other version control solutions is that
it accommodates large teams of developers working independently. As a
result, most widely used open source software programs have repositories
on GitHub. It is also worthwhile to note that, despite being open source,
most popular programs with many users are owned by large organizations
and generate revenues.4 Some widely known names are Linux, MySQL,
and Firefox. Owners of these products rely on various business models to
generate revenues; the most common revenue generation model is to sell
enterprise versions or additional bundles that complement the free version.
Since these are sophisticated and advanced products, the owners frequently
hire professional software engineers for further development and updating.

Users There are a total of 45.8 million registered users in the 2021 data
snapshot; these users can be uniquely identified based on their ID and user
names. Registered users are mostly individuals, but can in some instances
also be organizations, which are identified through a user type variable. The
range of engagement and activity on the platform varies widely, as well as
the completeness of the user profiles. We observe around 3.7 million users
with some degree of information about their physical location. Locations
are self-reported in a free text field; this information is automatically trans-
lated into a geolocation (longitude and latitude). We undertake rigorous
cleaning efforts to ensure that the user input is reasonable, and that the au-

3”What is GitHub?” The Economist, Jun 18, 2018.
4Commercial open-source software company index.
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tomated geocoding is accurate. As a first step in this cleaning effort, we
drop users reporting locations such as ‘the internet’, ‘the world’, ‘anywhere’,
‘remote’, ‘future’, ‘darknet’, ‘404’, ‘Earth’, ‘Moon’, ‘universe’, ‘galaxy’, ‘Milky
Way’, ‘Pluto’, ‘Mars’, or ‘space’.5 In a second step, we drop all users with
location information that is not granular enough to map them onto cities
accurately. This is crucial, as users reporting information on the country
level, for example, receive the geocoordinates of the country’s capital. As a
third step, we manually review common user entries that represent over 1%
of the observations at each location, excluding the smallest 1% of locations.
This process allows us to eliminate any remaining significant errors in user
allocation. We are left with a sample of 2.64 million users with cleaned lo-
cations, which is the subset of data we employ whenever our analyses rely
on location information. Figure C1 in the appendix plots all unique user
locations across the world. In terms of the selection of users indicating their
location, we are confident that our sample reflects the active, professional
users of the platform, as professional use of the platform incentivises a fully
completed profile to facilitate communication and work opportunities. We
provide an extended discussion of the representativeness of our sample in
the Appendix section A.3.

For the time period up to 2019 we observe an additional aspect of the
social network within GitHub, namely the followers and following of each
user. When following a user, one can receive notification of that user’s pub-
lic activities on GitHub. Around 3.8 million users follow at least one other
user, and those who follow at least one person follow an average of 7.8
users.

Projects We observe over 189 million projects in the database, which are
uniquely identified by project IDs. GitHub projects are organized into so-
called repositories, which contain all of the contents of a specific project; in
the following, we will use the terms ”project” and ”repository” interchange-

5We manually inspect location names containing these strings to not loose valid ad-
dresses such as Moon Vista Avenue, Las Vegas.
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ably. We link users to projects via the unique project IDs. Every project
has one owner, who typically holds a central role within the project, as we
demonstrate in Section 3, and users who – conditional on taking part in any
project – belong on average to 4.5 projects. Whenever we study collabora-
tion within projects based on geographic location, we define the projects’
origin as the owner locations. Given that we do not observe locations for
all users, as discussed above, these analyses rely on a subsample of 47.3
million projects for which owner location information is available. When
constructing flows of code between locations in a project, we additionally
require information on the locations of the contributing users. For 2.55 mil-
lion projects we observe the location of the owner and the location of at least
one project contributor.

Commits Commits are the primary user action to advance a project. They
refer to a version of changes made to a repository’s files. Changes to a
project that are initially made locally are grouped and pushed to update the
online version of the project. Commits typically come with a short message
describing changes made, so that one can keep track of file versions. For
each commit we identify the author, the committer and the project owner.
The author and committer can be different users, for instance when users
who are not project members suggest changes; a process explained further
in the section Forks and pull requests below.6

In our analysis we construct flows of software production based on au-
thors and owners. We clean the commits data in two main ways before
constructing these flows: First, we do not consider commits where the au-
thor and owner are the same user – a construct we term self-links. Second,
we alleviate potential biases stemming from bot activity by dropping users
that are tagged as ’fake’ by GitHub and by dropping commits that resemble
the automated nature of bot activity. For the latter we construct the within-

6Another instance can occur when multiple project members collaboratively work on
the same project branch (part of the project) and only one of them commits the others
changes.
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project variance of the commit frequency of users with at least 25 commits,
and drop them if they display a variance of zero, which means they commit
in exactly steady intervals.7

Forks and pull requests Users may copy projects, in GitHub terminology
“fork”, and create modifications or build a different version of the parent
project. There are two main rationals for doing so: First, a user may fork
a project, modify it and then propose to merge the changes with the main
project – an action that is referred to as creating a pull request. If accepted
the changes are committed to the original project, which we record accord-
ingly in our data as a flow of commits from the user proposing the alter-
ations to the owner of the parent project. Second, a user may create a new
independent software, which uses the original software as an input. In this
case the fork represents an import of final software product.8 While our
paper focuses on trade in services that is represented by the gradual con-
tribution of commits to the development and improvement of a software
product, the trade in final software products or ideas captured by this sec-
ond category of forks is an additional interesting aspect of the global soft-
ware production network. For the remainder of the paper we will use the
terms trade in services and trade in ideas/final software for these two di-
mensions of trade activity on GitHub. We empirically investigate trade in
ideas in Section 5.5 noting however the caveat that the volume of transac-
tions is much lower than for trade in services implying a noisier measure.

Other data In addition to the GitHub data, we use geographic information
on functional urban areas (FUAs) and administrative regions, population
and nighttime luminosity data from satellite images, and income data at
sub-national and country level. We describe the construction of all auxiliary
data we employ in the Appendix section A.

7Bots are software that run reoccurring tasks in an automated fashion.
8By final software product we mean a software product which can be used either by

consumers or by other software developers as an input for the production of other soft-
ware.
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3 The organization of teams

In this section we study the structure of production teams. Our primary rea-
son for doing so is to understand how to define the flows of software code
between locations. However, this touches upon a much broader aspect in
the theory of the firm and there is a large literature studying the hierarchies
in organizations (Garicano, 2000).

Production teams can be organized in different ways. At the one ex-
treme the production process may be organized in the shape of a star, such
that every worker or production unit delivers its output to the central unit.
Alternatively, production may be organized as a chain in which each unit
delivers its output to the next. Production can also be organized as a fully
connected graph, in which each individual interacts with everyone else.

We utilize our data to shed light on the structure of software production
teams. We construct linkages between individuals based on the follower
network within a project.9 The idea is that if two individuals frequently
interact with each other while working on a project, they are also likely to
follow each other. Then, we test whether the owner of the project stands out
among others. To that end, we estimate the following specification:

yij = α + β1Ownerj + β2Owneri + ϵij, (1)

where yij is a dummy if individual i follows individual j , Owner is a dummy
if the person is the owner of the project and ϵij is the error term. If the team
is organized as a chain, or if everybody interacts with everybody within the
network, then the owner should not have a special status and the coefficient
β1 = 0.

We present the results of our estimations in Table 1. Estimations are con-
ducted for all projects that have more than two participants. In the first col-
umn the only explanatory variable is whether user j is the owner. The esti-
mated coefficient indicates that owners are much more likely to be followed

9Since the data on followers is only available up until 2019, we restrict the other data
to the same time period.

11



Table 1: The structure of collaboration in software production teams

(1) (2) (3) (4) (5) (6)
i follows j i follows j i follows j i follows j i follows j Share of follows

Ownerj 2.0161*** 2.1468*** 1.4894*** 1.3300*** 1.2989*** 0.9352***
(0.0014) (0.0015) (0.0028) (0.0036) (0.0141) (0.0018)

Owneri 1.9697*** 1.2169*** 1.0627*** -7.2051***
(0.0016) (0.0032) (0.0041) (0.9721)

Same country 0.9506*** 0.6787*** 0.4621***
(0.0018) (0.0027) (0.0040)

Same location 0.4514*** 0.2389***
(0.0026) (0.0047)

Team size > 2 > 2 > 2 > 2 > 100 > 2
Mean 0.015 0.015 0.030 0.031 0.015 0.161

Observations 244,177,260 244,177,260 47,869,198 30,712,310 24,947,588 3,419,080
Pseudo R2 0.0303 0.0548 0.0517 0.0502 0.0106 0.0323
Notes: Columns (1)-(5) present the estimation results of equation 1, where the dependent variables are

dummies taking a value of 1 if contributor i follows contributor j. Column (6) presents the results of a
regression where the dependent variable is the share of follower links of individual i among all following
links in a given project. All specifications are estimated with PPML. In column (5) the sample is restricted
to projects with more than 100 contributors. * (**) (***) indicates significance at the 10 (5) (1) percent level.

by other project members. In the second column we include the Owneri

control and find that the estimated coefficient is also sizable. However, the
larger coefficient of Ownerj that is statistically significantly different from
Owneri shows that the owner is more likely to be followed than follow oth-
ers. The average for yij is 0.015. This indicates that within an average team
there are few interactions between a randomly selected pair. By contrast,
owners play a central role and maintain bilateral interactions with other
contributors.

In the following columns we add an indicator variable if a pair of mem-
bers are located in the same country and city. The estimated coefficients
on our variable of interest decrease somewhat but they are still large and
statistically significant. In column (5) we report results for the sample of
teams with 100 participants or more. The comparison with the results in
column (4) reveals that in large projects the role of the owner is as central as
in smaller projects. In larger projects the owner is much less likely to follow
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others, which given the larger team size seems to be intuitive. The distinc-
tion between large and small projects is important because in our data such
projects contribute disproportionately more to non-local links. More specif-
ically, in teams with 2 to 5 members, links to local members account for 60%
of all links, while in teams with more than 100 members such links account
for only 15% (see Table A1). In the last column of Table 1, we regress the
share of follower links on the owner dummy. Again we obtain a very large
and precisely estimated positive coefficient.

In Figure 1, we provide further evidence that within teams a few indi-
viduals attract disproportionately more connections than all others. In this
figure the blue line shows the correspondence between the share of follow-
ers and the share of projects by the top individual. More specifically, the
figure shows that in almost one-quarter of projects the top individual gets
100% of all follower links. If we interpret the following as a proxy for in-
teractions, this suggests that in a quarter of projects there are no horizontal
interactions between other members. Moving further along this line we see
that in over 40% of projects the leading individual gets 50% of all links.10

The other lines under the blue one show the same relationships for indi-
viduals ranked from second to fifth in terms of the follower share received.
The figure considers projects involving more than five members. Raising
this threshold, the distance between the top individual and the subsequent
members becomes larger.

When constructing trade flows, a key decision that we need to make is
whether code generated by a person in a given city flows to all other loca-
tions from which the project has members, or whether it flows to the city
of the owner. Our results presented in Table 1 and Figure 1 provide strong
support for the latter approach. Assuming that the code flows to all other
cities will vastly exaggerate trade flows because, as suggested by our analy-
sis, many team members do not interact with each other and work indepen-

10We should emphasize that when the leading individual follows others, this also gen-
erates a follower link. That implies that even for follower shares below 100% there does
not have to be horizontal interaction between project members that are not the leading
individual.
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Figure 1: The hierarchy of following structures in project teams

Notes: The figure plots the cumulative distribution of the share of followers within projects held by
the top 5 team members. The line at the top corresponds to the individual with the highest follow
share; the lines below show the follow share of the 2nd, 3rd, 4th and 5th most followed individual.

dently. To make this more intuitive we can consider the following example
from commodities trade. Imagine a Chinese phone assembly plant imports
separate components from Japan and South Korea. All three countries are
thus part of the same supply chain but trade volumes generated by this pro-
duction process do not directly affect bilateral trade between South Korea
and Japan, even if all three production units are part of the same multina-
tional company.

Based on the results and discussion above, we denote with Xij the vol-
ume of the code that flows from city j to city i determined by the following
expression

Xij = ∑
k∈K

commitsjk × 1[ownerik = 1], (2)

where K is the set of projects, commitsjk is the number of commits on project
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k by users from city j and 1[.] is the indicator function equal to 1 if the owner
of project k is located in city i.11 Intuitively this means that the volume of
code flowing from city j to city i is the sum of commits from location j in
projects whose owner is in city i.

4 Methodology

We propose several approaches to determine the productivity of each city in
the global software production process. Our main approach is based on the
standard Eaton and Kortum (2002) model in which individuals in different
locations produce and sell software code. This model allows us to derive a
structural gravity equation and recover productivities of locations. Then,
we propose two alternative reduced form approaches for ranking cities.
While each approach has its unique up- and downsides we find that they
produce consistent results.

4.1 A model of trade in tasks

The model is based on the standard Eaton and Kortum (2002) frame-
work. Several papers have used this framework to impute country-specific
productivity parameters (Waugh, 2010; Levchenko and Zhang, 2016). We
follow the approach used in these papers to impute the level of software
development productivity in specific locations. In our setting trade takes
place in software development services or tasks. We focus only on this sec-
tor and do not describe the rest of the economy. To the extent that we are
interested in estimating distance elasticities and productivities for the soft-
ware development, the weight of software in household preferences or its
contribution as an input to other sectors does not matter (see Levchenko
and Zhang, 2016). The only assumption we need is that labor is the sole in-
put required to produce software code. This would not appear to be a very

11Commits is our proxy of software code production which is described in more detail
in Section 2.
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strong assumption, because in the software development process the share
of labor is likely to be higher than in most other industries. Moreover, soft-
ware development tools (programs and cloud services), which are probably
the next most important input, are either available as open source or highly
tradeable without much variation in prices across space.

The analytical formulation of the problem is similar to the above men-
tioned papers. However, given the nature of our data and the environment
of open source software production, we provide somewhat different inter-
pretations. In particular, in a conventional trade model the unit of produc-
tion is a firm located in location i that produces a differentiated good q with
efficiency zi(q) by hiring labor (inputs) at cost wi. In our case the unit of
production is an individual rather than a firm and this individual uses his
or her own labor. We assume that software developers supply labor with
constant marginal disutility, which is the same in all locations and we set it
to be equal to one.12

Individual productivities are drawn from the Fréchet distribution with
the cumulative distribution function Fi(z) = e−Tiz−θ

. We allow the parame-
ter T – which governs the average of the productivity draws – to be location-
specific; this is our main object of interest. We interpret it as the average
level of software development productivity or skills in location i. Higher
values of Ti imply higher levels of average productivity. θ captures the dis-
persion of productivity draws.

Tasks can be provided locally or be exported to other cities subject to
the conventional iceberg trade cost dij. The interpretation of iceberg trade
costs is that periodic in-person meetings improve communication and the
likelihood/frequency of such meetings is decreasing with distance.

The final software is produced using a CES production function that ag-
gregates a continuum of task varieties q ∈ [0, 1] according to the following
formulation

12In Appendix section B we also present the results for a version of the model where
software developers work for a city-specific wage.
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Qi =
∫ 1

0

[
Qi(q)(ϵ−1)/ϵdq

]ϵ/(ϵ−1)
,

where ϵ denotes the elasticity of substitution across varieties q and Qi(q) is
the amount of variety q that is used in production. Following the steps in
the aforementioned literature the fraction of software development services
provided by location j in the share of total software services consumed in
location i is given by the following gravity equation

Xij

∑j Xij
=

Tj(dij)
−θ

Φi
,

where Φi = ∑j Tj(dij)
−θ is the multilateral resistance term. Dividing Xij by

the analogous expression for Xii and taking logs we obtain the conventional
gravity equation

ln
(

Xij

Xii

)
= ln

(
Tj
)
− ln (Ti)− θln(dij), (3)

where Xij denotes the volume of the flow of goods from location j to location
i, the construction of which was described in equation (2). Next we express
the log distance cost from equation (3) as

ln(dij) = dk + aij + bij + Langij + imi + νij,

where dk is the contribution to trade costs of the distance between i and j
measured in miles. Other variables are an indicator if cities are in the same
country (aij), an indicator if countries share a border (bij), an indicator for a
common language Langij and an importer fixed effect imi. Substituting the
expression for trade costs back to the equation (3) we obtain

ln
(

Xij

Xii

)
= ln

(
Tj
)︸ ︷︷ ︸

Exporter FE

−ln (Ti)− θimi︸ ︷︷ ︸
Importer FE

−θdk − θaij − θbij − θLangij︸ ︷︷ ︸
Bilateral observables

−θνij

(4)
In equation (4) the first term captures exporter fixed effects, which is the
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main object of interest. We estimate equation (4) using PPML. As a result
of the estimation we obtain exporter fixed effects for each location, which
have the following relationship with the productivity parameter

exp(EFEj) = Tj, (5)

where EFEj are the exporter fixed effects from equation 4. One impor-
tant detail worth discussing is our inclusion of the term imi in equation
4. An alternative approach is to include a term for exporters exj and use
importer fixed effects to recover productivities from equation 5. There are
three reasons motivating our choice. First, Waugh (2010) shows that when
one includes an exj term in equation 4, then the implicit assumption is that
unit costs of production are the same across locations. Given that we do
not have data on the wages of software developers across cities around
the world, our preferred approach is to estimate equation 4 with the term
imi which implies that unit costs are lower in more productive locations.
Second, the specification exj implies that locations face different exporting
costs, in addition to the gravity terms for which we control. In the case of
trade in goods such friction my be justified by the quality of infrastructure
such as ports, which is typically lower in developing countries. In the case
of software code, the role of these factors is arguably less important. An
additional justification for our choice is that by estimating equation 4 we re-
cover a much larger number of fixed effects than with importer fixed effects.
This is driven by the fact that there are more contributors (exporters) in the
data than project owners (importers), which enables us to generate more
variation for the identification of exporter fixed effects. Given these argu-
ments we prefer the use of exporter fixed effects, however we demonstrate
in Appendix section B that our productivity estimates are highly correlated
with a specification using importer fixed effects and city-specific wages.
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4.2 Reduced form approach

Approach 1: Page rank algorithm. We think of locations as nodes of a
graph and of Xij’s as the strength of the links between nodes of the graph.
The position of a node in a graph depends not only on its bilateral links
but also on the links of the nodes to which it is connected and so forth. In
other words, the centrality of each node is determined recursively. A widely
used approach for the determination of node’s centrality is the Page Rank
algorithm (Brin and Page, 1998). The scores of locations are obtained as a
solution to the following equation:


Score1

Score2
...

ScoreN

 =


(1 − d)/N
(1 − d)/N

...
(1 − d)/N

+ d


l11 l12 . . . l1N

l21
. . . . . .

. . . lij
lN1 . . . . . . lNN




Score1

Score2
...

ScoreN

 (6)

where d is a parameter and lij is obtained by normalizing Xij (lij =
Xij

∑j Xij
).

The normalization ensures that ∑i∈N lij = 1. If city i has no contributor
involved in any project with other cities, then lij = 0 ∀j. Links to the node
itself are not counted lij = 0 if i = j. Note that the resulting matrix, which is
referred to as the adjacency matrix, is not necessarily symmetric. Equation
6 is solved by making an initial guess (Scorei = 1/N) and then making
iterative computations until it converges. Typically, convergence is obtained
rather quickly, which also turns out to be the case in our application.

Approach 2: Followers based ranking As we described when introduc-
ing our data, on GitHub users may follow other users. The notifications
received about followed users’ public activities on GitHub enable and ease
interaction. At the same time, people who make important contributions,
generate new ideas or manage large projects are more likely to attract fol-
lowers. We demonstrate the latter in Section 3, where we document the
central role of project owners within the structure of a project team utilizing
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the follower network. We employ follower information again to construct
a graph in which each user is a node and directional edges between nodes
are based on the following and follower links of users. We then apply the
same recursive ranking algorithm described above to calculate the central-
ity score of each user. We interpret this measure as a proxy for individual
quality. In order to measure productivities at the location level we aggre-
gate individual scores. Additionally, we use individual level scores to study
the pattern of positive selection into migration in Section 6.

5 Results

In this section we start by discussing our estimates of the distance elas-
ticity for the gravity equation and present our estimates of productivity at
the city level. We subsequently conduct some validity exercises by compar-
ing our estimates for a subsample of cities and countries with IT specialist
earnings obtained from various sources. Then, we compare our estimated
productivity gaps between rich and poor countries with macro data. We
finish the section by comparing trade in tasks to trade in ideas.

5.1 Structural Estimation Results

In Table 2 we present the results of the gravity equation using PPML.
The estimated distance elasticity is around 0.8, which is close to the abso-
lute value of the estimates for trade in goods (Allen and Arkolakis (2018)
obtain a value of 1 for the US). This large estimate implies that geography
continues to play an important role in trade in tasks, even though the flow
of services between locations would seem to be frictionless. Our preferred
explanation for this observation is that trade flows are determined in part
by offline interactions involving in-person meetings, discussing ideas and
making decisions on collaborations. Online software production does not
occur in a vacuum, but is shaped by offline interactions. Thus, even though
new technologies and platforms such as GitHub facilitate communication,

20



Table 2: Distance elasticities for trade in tasks

(1) (2) (3) (4) (5)
Xij/Xii Xij/Xii Xij/Xii Xij/Xii X̂ij/X̂ii

Log distance in miles -0.8081*** -0.8093*** -0.9129*** -0.6833*** -0.7311***
(0.0811) (0.0688) (0.0834) (0.1053) (0.0071)

Controls Yes Yes Yes Yes Yes
Same location dummy No No No Yes No
Sample FUA + Admin FUA only US FUA only FUA + Admin FUA + Admin
Observations 16,678,894 5,266,000 60,945 16,678,894 13,190,040
Pseudo R-squared 0.7067 0.7053 0.8419 0.7087 0.4920

Notes: Estimations results of equation 4. In columns (1), (4) and (5) the sample consists of all FUAs and Admin-2
regions. In column (2) we restrict the sample to FUAs, and in column (3) to FUAs in the United States only. In
column (5) we multiply each commit by the individual quality measure of the author obtained from approach 2,
in order to get a quality weighted trade flows (X̂ij). We winsorize this measure at the 99.95 level to account for
extreme values produced by rare very small values in the denominator because of this multiplication. Controls
include binary dummies for the same country, shared borders and shared official languages. Column (4) addi-
tionally includes a same location dummy. All specifications are estimated with PPML, and include importer and
exporter fixed effects. * (**) (***) indicates significance at the 10 (5) (1) percent level.

they cannot fully replace in-person interactions, but rather serve as a com-
plement to them.

This mechanism is consistent with the idea that trade is hindered not
only by transportation costs but also by information frictions which increase
with distance (Allen, 2014). These information frictions are understood to
be potentially large in online goods markets, particularly with a large num-
ber of market participants (Bai, Chen, Liu, Mu, and Xu, 2022), and for trade
in goods face-to-face meetings are an effective way to alleviate them (Startz,
2016). For trade in services these frictions are likely exacerbated since prod-
uct and quality details are often more difficult to define and verify, such
that the information friction component in the trade costs may exceed that
in goods trade.

In the following columns of Table 2 we report the results for several ad-
ditional estimations to ensure the robustness of the results. In the second
column we restrict the sample to FUAs and construct the bilateral flows by
ignoring users located outside FUAs. The estimated coefficient is not af-
fected. In the third column we restrict the sample to US FUAs only. The
estimated distance elasticity gets slightly larger, suggesting that there are
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no large differences between global and US domestic patterns. In column
(4) we add a dummy variable for the same location. We expect the absolute
value of the distance elasticity estimate to drop, because such pairs have 0
distance and interact with each other more intensively. However, the coef-
ficient remains sizable.

One limitation of our data is that our flow variable is constructed based
on counts rather than values. We add a quality dimension to commits in
order to get closer to the value concept. More specifically, we multiply
the commits made by individual j by their quality score, which we intro-
duced in Section 4 under Approach 2. We denote the quality adjusted trade
flows by X̂ij. Ideally the quality measure would be at the level of a transac-
tion/commit, but we do not have this kind of information. Our assumption
is that higher quality individuals make more valuable commits. Column (5)
of Table 2 presents the result for this quality adjusted measure. The result-
ing absolute value of the distance elasticity is only slightly lower compared
to the one in column (1).

5.2 City productivities

Productivity measures for the top 35 cities constructed according to the
methodology described in Section 4.1 are presented in the first column of
Table 3. It is reassuring that San Jose, which according to our FUA defini-
tion includes the entire Bay Area, appears at the top of our ranking. The
positions of Portland, nicknamed Silicon Forest with its substantial techno-
logical cluster, and of Bengaluru, the IT capital of India, lend further credi-
bility to our results.

In columns 2 and 3 we present the results for the two reduced form ap-
proaches. One noticeable difference is that for these approaches, the list is
dominated by large cities. A key advantage of the structural model is that
the results do not depend on city size. This can be seen from equation 4,
where the outcome variable in the gravity equation is normalized by inter-
nal interactions. In the case of the recursive ranking approaches on the other
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Table 3: Ranking of the top 35 cities across the world

Rank Model Approach 1 Approach 2

1 San Jose San Jose San Jose
2 Prague New York New York
3 Bengaluru Seattle London
4 Las Palmas de Gran Canaria Boston Beijing
5 Los Angeles London Seattle
6 Nuremberg Washington D.C. Shanghai
7 Portland (Oregon) Los Angeles Portland (Oregon)
8 Ottawa Paris Boston
9 New York Beijing Los Angeles
10 Seattle Tokyo Tokyo
11 Detroit Atlanta Berlin
12 Taichung Chicago Paris
13 Krasnoyarsk Portland (Oregon) Guangzhou
14 Toronto Berlin Toronto
15 Berlin Denver Austin
16 Ho Chi Minh City Austin Hangzhou
17 Sydney Shanghai Chicago
18 Tokyo Toronto Denver
19 Cape Town Amsterdam Washington D.C.
20 Cambridge Bengaluru Melbourne
21 Arrecife Seoul Pittsburgh
22 London Philadelphia Stockholm
23 Dallas Tijuana Moscow
24 São Paulo Nanjing Guangzhou Sydney
25 Krakow Vancouver Vancouver
26 Boston Zurich Bengaluru
27 Oslo São Paulo Montreal
28 Vancouver Stockholm Amsterdam
29 Moscow Montreal São Paulo
30 Beijing Sydney Atlanta
31 Dutchess County US (Poughkeepsie) Cambridge Philadelphia
32 Austin Moscow Madrid
33 Melbourne Delhi [New Delhi] Barcelona
34 Nanjing Melbourne Munich
35 Tijuana Hangzhou Seoul

Notes: This table displays the top 35 locations ranked by the three different methodologies de-
scribed in Section 4.
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hand, it is natural that large cities receive more links; accordingly, it is not
proper to interpret the scores obtained from these two methods as measures
of productivity. The method based on the aggregation of individuals’ scores
can actually be interpreted as a proxy for total output.

By looking at some individual cities we can see these differences. For in-
stance, large cities with many users such as London or Boston rank higher
in approaches 1 and 2 compared to the rank they receive through the model.
Another example is Taichung, which is not a large city compared with other
Asian giants but hosts Taiwan’s world-beating semiconductor industry. We
also find that Poughkeepsie has a relatively high rank. This is the location
of IBM’s headquarters. The productivity ranking by the model can deliver
somewhat unexpected results as well. Specifically, we observe some loca-
tions that are not traditionally associated with the IT sector, for example,
Las Palmas de Gran Canaria. Such locations might be able to selectively,
due to amenities or preferential tax regimes, attract top experts, who can
have a profound impact on estimated productivity.

5.3 Validation

We take two steps to validate our estimated measures. First, we com-
pare our productivity measure with wages. Second, we use our data and
construct university rankings and compare them with such rankings from
other sources.

Using wages to proxy productivity In the absence of direct measures of
productivity, one solution is to use the wages of software developers, which
are closely related to productivity, especially in an industry where the share
of labor is high.

We begin by restricting our sample to the US and regress our productiv-
ity measure on the wages of IT specialists in US cities. Our wage data come
from the ACS, as described in Section 2. The results are displayed in panel
(a) of Figure 2. We observe that both variables move together, also indi-
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cated by a significant correlation coefficient of 3.02. In panel (b) of Figure 2
we explore the relationship between our measure and the wages of software
developers around the world. The wage data are constructed from a survey
conducted by Stack Overflow. The data are at the country level, so we need to
aggregate our productivity measures as well. To this end, we use the share
of GitHub users of each location within each country and construct user
weighted aggregate productivity at the country level. We restrict the sam-
ple to countries with multiple locations to reduce the influence of outliers,
however the results are robust to using all countries. For this specification
we also observe a positive relationship between our aggregated productiv-
ity measure and wages of software developers across countries. Clearly, the
survey data have limitations, but both results together lend credibility to
our estimated productivity measure. The advantage of the survey is that
it covers many countries around the world, while the advantage of the US
data is that they come from an official source and are less likely to suffer
from selection bias.

Comparing university rankings We take advantage of information on the
reported affiliations of users. Using this information we construct a ranking
of universities. This approach is similar to Approach 2. However, instead
of aggregating individual scores at the city level, we aggregate individual
scores at the university level. More specifically, we identify university affili-
ated users for the US, the UK and Germany, and sum their individual scores
for the identified institutions. Table 4 below lists the top 35 universities that
emerge from this approach.

This exercise bears some similarities to the recent paper by Martellini
et al. (2024), who use data from the website Glassdoor to construct uni-
versity rankings. We should emphasize that our ranking is field-specific
and includes computer science, mathematics, engineering and some other
technical fields whose representatives are intensively involved in computer
programming. Also, the ranking does not directly measure the quality of
university graduates because individuals with a university affiliation can
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Figure 2: Estimated producitivities and IT-sector wages

(a) US FUAs productivity and IT-related professions’ wages
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(b) User weighted productivity and IT wages country level
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Notes: Panel (a) plots the relationship between log productivity estimated from the model and wages
of IT specialists, constructed from the ACS, across FUAs in the US. Panel (b) plots the relationship
between log productivity aggregated at the country level by applying user weights across locations
within each country and wages of IT specialists from the 2023 Stack Overflow Developer Survey.
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Table 4: Ranking of the top 35 universities in the US, the UK and Germany

Rank University Rank University
1 MIT 19 Northeastern University
2 University of California, Berkeley 20 University of Saarland
3 Carnegie Mellon University 21 Columbia University
4 University of California, Los Angeles 22 University of California, San Diego
5 Stanford University 23 University of Duesseldorf

6 University of Oxford 24 University of Applied Sciences Munich
7 Vanderbilt University 25 Arizona State University
8 Technical University Berlin 26 Harvard University
9 University of Wisconsin-Madison 27 Brown University

10 Johns Hopkins University 28 Purdue University

11 University of Edinburgh 29 California Institute of Technology (Caltech)
12 University of Washington 30 University of California, Davis
13 Cornell University 31 Technical University Munich
14 Brigham Young University 32 University of Cambridge
15 University of Colorado Boulder 33 University of Hawaii

16 University of Arizona 34 University of Essen
17 New York University 35 University of Michigan
18 Washington University in St. Louis

be faculty members, people working at university labs and students. Even
if it only includes faculty members, it is still a valuable measure because
it captures the knowledge and contributions of faculty to frontier software
projects, which is an important input to the educational process. Impor-
tantly, these software projects have real life applications and commercial
uses, so our measure does not capture some abstract theoretical knowl-
edge.13 Compared with the results of Martellini et al. (2024) our ranking
is highly correlated with conventional rankings, such as the US News Best
Colleges Ranking or the Academic Ranking of World Universities.14 The
fact that the university ranking produced from our data is so closely related
to rankings produced by independent sources lends further credibility to
our results and indicates that it is unlikely that our data suffers from sys-
tematic selection issues.

13From this point of view our exercise is also related to Bias and Ma (2023) who construct
a distance measure between university course syllabi and academic articles to measure the
”education-innovation gap”.

14See http://www.shanghairanking.com/rankings/gras/2021/RS0210 for the 2021
ranking of universities regarding Computer Science and Engineering.
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Table 5: Correlations between IT productivity and nighttime luminosity per
capita and GDP per capita globally

(1) (2) (3) (4)
Log Log Log Log

productivity productivity productivity productivity

Log nightlights 0.5248***
per capita (0.0634)

Log GDP per capita 0.8448*** 0.8367*** 0.9028***
(0.1162) (0.1228) (0.1259)

Sample FUA Country level Country level Country level
Aggregation method Average of top 5% Population weighted User weighted
Observations 2,639 121 121 121
R-squared 0.0239 0.3252 0.3145 0.3251
F 68.45 52.86 46.45 51.40

Notes: The dependent variables are log productivity estimated from the model. For the country level re-
gressions producitivities are aggregated using three different approaches: first, by averaging productivity
in top 5% locations (column 2); second, by applying population weights in each location (column 3); third,
by applying GitHub user weights in each location (column 4). For the country level regressions, we restrict
the sample to those countries with multiple locations to reduce the influence of outliers, however the results
are robust to using all countries. Standard errors are robust. * (**) (***) indicates significance at the 10 (5) (1)
percent level.

5.4 Comparing software development productivity gaps with

GDP per capita

In this subsection we compare our estimated productivities with con-
ventional measures of economic development. Since we rely on city-level
data and GDP per capita data at this level of granularity do not exist, we
use nighttime luminosity per capita as a proxy for income levels. One prob-
lem with nighttime luminosity is that rural or underdeveloped and sparsely
populated areas may not emit any light. For this reason we restrict the anal-
ysis to FUAs. In Table 5 we regress our productivity measure on nighttime
luminosity per capita. In the first column we observe a strong positive rela-
tionship between our productivity estimates and income levels, proxied by
nighttime luminosity per capita, for the sample of all FUAs.

Next, we compare our productivity measure with GDP per capita data
from the WDI. As was mentioned above, we need to aggregate our produc-
tivity measures at the country level. We use three alternative approaches.
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First, we calculate the average productivity in the top 5% of locations within
each country. Second, we use population shares of each location within
each country and construct population weighted aggregate productivity at
the country level. Third, we use the GitHub user shares of each location
within each country and construct user weighted aggregate productivity at
the country level. The results, presented in columns (2)–(4) of Table 5, show
that there is a strong positive relationship between GDP per capita and all
three productivity measures.

Having established a positive relationship between our estimated pro-
ductivity measure and various measures of income, we also want to as-
sess whether gaps in software development productivity are different from
gaps in GDP per capita between high and low income countries. To this
end, we calculate the difference in average log GDP per capita of coun-
tries in the top and bottom GDP per capita deciles. We fix the set of these
countries in both groups and also calculate the difference between the aver-
age log of productivity. The difference in GDP per capita is 4.61 log points
(see Table 6). The equivalent figures are 4.27 log points for within-country
population-weighted productivity, 4.15 log points for the average produc-
tivity of top 5% locations, and 4.64 log points for GitHub user-weighted
productivity. According to all three approaches, the productivity differ-
ences are very close to each other and also to the differences in GDP per
capita. However, we know from the macro development literature that the
agricultural sector is a major contributor to per capita GDP differences be-
tween rich and poor countries (Gollin, Parente, and Rogerson, 2002). Pro-
ductivity differences in other sectors are smaller. Thus, we want to compare
our estimated productivity gaps with non-agricultural sectors. We use data
from the WDI on value added and employment in the industry and ser-
vices sectors and construct productivity gaps for the same set of countries
that we classified as belonging to the top and bottom deciles based on GDP
per capita. The productivity gap for industry is 3.71 and for services 3.73,
which are smaller than our estimated IT productivity gaps. This means that
in terms of productivity in the software development sector, poor countries
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Table 6: Productivity gaps between rich and poor countries

Variables Productivity gap
GDP per capita 4.61
Industry VA per worker 3.71
Services VA per worker 3.73
IT productivity, top 5% 4.15
IT productivity, population weighted 4.27
IT productivity, user weighted 4.64

Notes: This table present log productivity differences between top and bottom 10% of countries
sorted by GDP per capita. The sample is restricted to those countries with multiple locations
to reduce the influence of outliers, however the results are robust to using all countries. Pro-
ductivity gaps are calculated as log(X̄top10)− log(X̄bot10), where X̄ is the average of the variable
shown in the rows of this table in top or bottom income group. Data for GDP per capita, sec-
toral value added and employment were obtained from WDI. IT producitivities are aggregated
at the country level by using three approaches: first, by averaging productivity in top 5% loca-
tions; second, by applying population weights in each location; third, by applying GitHub user
weights in each location.

perform slightly worse than they do in other non-agricultural sectors.

5.5 Trade in ideas

In Section 2 under Forks and pull requests we discussed that our data
allow us to study trade of ideas and final software utilizing forks. In this
case the analogue of equation 2, which formalized the construction of the
flow of code, is given by:

X̃ij = ∑
k∈K

f orkik × 1[ownerjk = 1], (7)

where X̃ij is the flow of final software from city j to city i, f orkik is the num-
ber of forks on project k by other projects with owners from city j and 1[.] is
the indicator function equal to 1 if the owner of project k is located in city j.
Note that for the construction of this measure we use the second category of
forks we described in the data section only, as those capture the dimension
of trade in ideas.

Going back to the model described in Section 4.1, we now assume that
the unit of production is a project owner located in city i who produces a
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Table 7: Trade in ideas

(1) (2) (3) (4)

X̃ij/X̃ii Comparative advantage in ideas over services

Log distance in miles -0.4376***
(0.0072)

Log GDP per capita 0.8082*** 0.3396*** 0.1280
(0.1751) (0.1241) (0.1048)

Controls Yes No No No
Sample FUA + Admin Country level Country level Country level
Aggregation method Average of top 5% Population weighted User weighted
Observations 11,922,149 119 119 119
R-squared 0.6629 0.1363 0.0611 0.0139
F 21.30 7.492 1.493

Notes: In column (1), the dependent variable is log productivity for trade in ideas estimated from the model.
Controls include binary dummies for the same country, shared borders and shared official languages. In
columns (2) - (4), the dependent variable is the ratio of productivities for trade in ideas and trade in services
aggregated to the country level using three different approaches: first, by averaging the ratio in top 5% lo-
cations (column 2); second, by applying population weights in each location (column 3); third, by applying
GitHub user weights in each location (column 4). For the country level regressions, we restrict the sample to
those countries with multiple locations to reduce the influence of outliers. The results are robust to using all
countries, and the estimate in column (4) becomes statistically significant. Standard errors are robust. * (**) (***)
indicates significance at the 10 (5) (1) percent level.

differentiated software q. We follow the same steps as above to estimate a
gravity equation and obtain measures of productivity of final software gen-
eration. Column 1 of Table 7 present the results of the distance elasticity
for trade in ideas/final software. The estimated coefficient is smaller com-
pared to trade in software code, which suggests that ideas flow more freely
in space, yet not fully void of frictions.

Final product ownership generates more value than coding, which is
why developers individually and software production locations collectively
strive to move up in the value chain and provide successful final software
products (Arora, Arunachalam, Asundi, and Fernandes, 2001). To better un-
derstand the positions of different geographic locations in the value chain,
we construct a measure of comparative advantage for idea production ver-
sus provision of coding services. We back out productivities in idea produc-
tion equivalently to the approach for software development services that
were presented in Table 3, however using the flow data based on equation
7. Then we construct the ratio of productivity in ideas over productivity in
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services at the location level and aggregate it to the country level following
the previous three aggregation approaches. We regress the resulting ratio
on GDP per capita. The results of this exercise are presented in columns
(2)-(4) of Table 7. For all three aggregation approaches we observe a pos-
itive relationship between GDP per capita and comparative advantage in
idea production while in two cases the estimated coefficients are statisti-
cally significant. This results suggest that higher income countries have a
comparative advantage in idea production compared to coding services.

6 Migration and Sorting

In this section we turn to the migration of human capital across and
within countries. We are particularly interested in determining whether
there is quality-based selection into locations. To assess this, we construct
an individual-level migration variable, which requires that we observe indi-
viduals in both our 2019 and 2021 snapshot of the data and that they report
their location in both years.15 The resulting sample comprises about 1.56
million users, of whom about 98,000 migrate, 38,000 between countries and
60,000 within countries. At the country level, the largest gross outflows of
migrants are from the US, India, the UK, Canada and Brazil, while coun-
tries with largest gross inflows are the US, the UK, Germany, Canada and
the Netherlands. Figure C4 illustrates some of the largest bilateral migra-
tion flows.

We combine this information about migration decisions with the indivi-
dual-level quality scores that were constructed as an intermediate step to
assemble the city ranking according to Approach 2. We regress a dummy
that indicates whether an individual migrated or not on this measure. The
results are presented in panel A, columns (1) – (3) of Table 8. We observe a
positive and statistically highly significant coefficient that is robust to dif-
ferent fixed effect structures – the most rigorous of which includes desti-

15We apply the same data cleaning efforts to the 2019 snapshot of the data that we de-
scribed in Section 2 for the 2021 snapshot of the data.
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Table 8: Individual quality and likelihood to migrate

(1) (2) (3) (4) (5)

Migrated Migrated Migrated Migrated
within country

Migrated
across country

Panel A:
Log individual score 0.1902*** 0.1639*** 0.1898*** 0.1902*** 0.1838***

(0.0091) (0.0081) (0.0052) (0.0052) (0.0123)

Observations 939,034 938,552 933,943 921,550 909,621
Pseudo R2 0.0175 0.0630 0.108 0.106 0.222

Panel B:
2nd quartile 0.6303*** 0.5971*** 0.6201*** 0.6804*** 0.5001***

(0.0224) (0.0252) (0.0188) (0.0160) (0.0404)
3rd quartile 0.9101*** 0.8504*** 0.8814*** 0.9439*** 0.7497***

(0.0160) (0.0215) (0.0218) (0.0184) (0.0446)
4th quartile 1.2919*** 1.1739*** 1.1991*** 1.2919*** 1.0106***

(0.0166) (0.0278) (0.0279) (0.0219) (0.0635)

Observations 1,566,353 1,565,559 1,558,279 1,539,900 1,519,561
Pseudo R2 0.0439 0.0902 0.133 0.123 0.244

Origin country FE X X
Destination country FE X X X
Origin city FE X X X
Number migrants 97,438 97,438 97,438 60,122 37,316

Notes: In columns (1) - (3) the dependent variable is an indicator variable that is equal to one if an in-
dividual’s location changed comparing the 2019 and 2021 snapshots of the GitHub database. In column
(4) we consider location changes within the same country only, and in column (5) changes to locations
in another country only. The individual quality score is based on the centrality of the individual in the
follower network. Panel A presents results for the log of this individual score, whereas in panel B we
construct dummies for the quality score quartile an individual belongs to. All specifications are esti-
mated by PPML. The fixed effects employed in each regression are marked in the table. Standard errors
are clustered at the level of origin cities. * (**) (***) indicates significance at the 10 (5) (1) percent level.

nation country and origin city fixed effects. In this case migrants from the
same city of differing quality lend the identifying variation. In panel B we
assign individuals to quartiles based on their score and estimate the same
specifications by using indicator variables for each quartile. We observe
that the estimated coefficients increase monotonically in all specification. In
columns (4) and (5) of the table, we study differences in within and across
country migration in relation to our measure. The observed effects are sim-
ilar for both types.
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To address the question of quality based sorting, we construct an indica-
tor for upward and downward migration. The indicator is equal to 1 if the
destination city of the migrant is ranked higher than the origin city based
on the estimated productivities from the model. The results for the contin-
uous score and quartiles dummies are presented in panels A and B of Table
9, respectively. In both panel A and B, we observe that the coefficient on
upward migration is larger than that on downward migration. The fact that
the coefficient on downward migration is positive is not unexpected, be-
cause we know from the literature that higher skilled individuals are more
mobile (Borjas, Bronars, and Trejo, 1992). In columns (3) and (4) of Table
9 we condition the sample on migrants only to remove any confounding
effects from selection into migration. In these specifications, the estimated
coefficients for upward and downward migration have opposite signs. The
results of this table indicate that (i) higher quality software developer are
more likely to migrate in general; (ii) among migrants, those of higher qual-
ity are more likely to migrate to better locations and those of lower quality
to worse locations.

While we demonstrated that our measure of a location’s productivity
is well correlated with income levels, it might be the case that individuals
choose to migrate to a lower quality location with higher income levels. To
investigate this, we regress our individual level quality scores on a dummy
indicating an upward or downward migration based on the origin and des-
tination countries’ relative GDP per capita. The results are presented in
Table 10 and are similar to the ones based on locations’ productivities. We
observe that individuals with higher quality scores are more likely to mi-
grate in both directions but the coefficient on upward migration is higher. In
columns (3) and (4) we again restrict the sample to cross-country migrants
to remove systematic differences between migrants and non-migrants, as
well as within-country migrants and cross-country migrants. The results
show that among migrants, the higher skilled ones are more likely to move
up.
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Table 9: Directional migration of individuals based on individual quality

(1) (2) (3) (4)
Up migration Down migration Up migration Down migration

Panel A:
Log individual score 0.2124*** 0.1515*** 0.0307*** -0.0343***

(0.0064) (0.0081) (0.0034) (0.0070)

Observations 872,287 878,591 69,184 66,393
Pseudo R2 0.186 0.128 0.0907 0.127

Panel B:
2nd quartile 0.6368*** 0.5832*** 0.0104 -0.0276**

(0.0214) (0.0284) (0.0104) (0.0119)
3rd quartile 0.9155*** 0.8246*** 0.0558*** -0.0787***

(0.0217) (0.0356) (0.0091) (0.0107)
4th quartile 1.2668*** 1.0687*** 0.0954*** -0.1364***

(0.0288) (0.0452) (0.0101) (0.0148)

Observations 1,465,610 1,467,499 85,657 82,480
Pseudo R2 0.202 0.147 0.0927 0.131

Destination country FE X X X X
Origin city FE X X X X
Sample All All Migrants Migrants
Number migrants 52,256 37,763 52,256 37,763

Notes: The dependent variable up migration (down migration) is an indicator variable that is equal to one
if an individual migrated to a location more (less) productive than their previous location. In columns
(3) and (4) we restrict the sample to migrants only. The individual quality score is based on the centrality
of the individual in the follower network. Panel A presents results for the log of this individual score,
whereas in panel B we construct dummies for the quality score quartile an individual belongs to. All
specifications are estimated by PPML. The fixed effects employed in each regression are marked in the
table. Standard errors are clustered at the level of origin cities. * (**) (***) indicates significance at the 10
(5) (1) percent level.

6.1 Migrants in their destinations

Next we assess migrants’ relative quality compared to the quality of res-
idents in their destination location before migrating. To this end we con-
struct a dummy variable that indicates whether an individual is above or
below the median quality of GitHub users in their destination city. In panel
A column (1) of Table 11 we regress the migration dummy on this mea-
sure, employing destination city fixed effects. By design the outcome has a
sample mean close to 0.5, such that a positive coefficient in this regression
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Table 10: Migration to higher and lower income locations based on individ-
ual quality

(1) (2) (3) (4)
Migration to >
GDP per capita

Migration to <
GDP per capita

Migration to >
GDP per capita

Migration to <
GDP per capita

Panel A:
Individual quality 0.3021*** 0.1936*** 0.0196*** -0.0248***

(0.0111) (0.0116) (0.0040) (0.0070)

Observations 839,292 807,682 27,416 25,410
Pseudo R2 0.125 0.125 0.141 0.226

Panel B:
2nd quartile 0.5330*** 0.6941*** -0.0086 0.0049

(0.0306) (0.0379) (0.0108) (0.0153)
3nd quartile 0.8936*** 0.9535*** 0.0078 -0.0150

(0.0272) (0.0368) (0.0090) (0.0139)
4nd quartile 1.3681*** 1.2778*** 0.0344*** -0.0584***

(0.0268) (0.0490) (0.0089) (0.0150)

Observations 1,393,561 1,345,274 33,800 31,156
Pseudo R2 0.140 0.138 0.142 0.230

Origin city FE X X X X

Sample All All Cross-country
migrants

Cross-country
migrants

Number migrants 22,913 14,403 22,913 14,403

Notes: The dependent variable in columns (1) and (3) ((2) and (4)) is an indicator variable that is
equal to one if an individual migrated to a country with higher (lower) GDP per capita than their
previous location. In columns (3) and (4) we restrict the sample to cross-country migrants only. The
individual quality score is based on the centrality of the individual in the follower network. Panel
A presents results for the log of this individual score, whereas in panel B we construct dummies for
the quality score quartile an individual belongs to. All specifications are estimated by PPML. The
fixed effects employed in each regression are marked in the table. Standard errors are clustered at
the level of origin cities. * (**) (***) indicates significance at the 10 (5) (1) percent level.

indicates that migrants are on average better than the median user in their
destination. Vice versa, a negative coefficient would suggest the opposite.
The estimated effect implies that an average migrant is better than the me-
dian of users in 74% of cases in our sample.16 In columns (2) and (3) we

16We transform the semi-elasticity of 0.3937 according to the following formula: (100 ∗
(exp(β)− 1)). Multiplying the baseline likelihood of 0.5 with the resulting 48.245% yields
around 24% higher likelihood of being above the median quality in the destination.
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decompose migration into upward and downward migration based on lo-
cations’ productivities as in Table 9. The results show that on average this
finding holds even in the case of an upward migration move. Naturally,
the estimated coefficient is larger for downward migration moves, as the
median quality of software developers is lower in these cases. In columns
(4) and (5) we replicate the specification but for upward and downward
migration defined by GDP per capita differences as in Table 10. The gen-
eral patterns and estimated coefficients turn out to be very similar to the
productivity based results.

In panel B of Table 11 we investigate how migration decisions affect the
migrants’ individual position in the quality score distribution. We calcu-
late the change in quality score quartile based on the distribution of quality
scores in origin and destination location in 2019, that is prior to migration
taking place. We regress the change in quartile on the different migration
dummies we have employed in panel A. The results are consistent with the
evidence we compiled so far. Migrants move on average down the qual-
ity score distribution, which is driven by moves to more productive and
higher income locations. Moves to less productive places see the migrant
on average move up the quality score distribution.

6.2 Aggregate flows of migration

In the previous subsection we documented strong sorting patterns using
individual level migration decisions. These patterns imply that locations
and countries with an initially low stock of individuals with high quality
are loosing their best experts. In the literature this phenomenon is referred
to as brain drain. In this subsection we investigate whether the migration
pattern at the individual level has tractable implications at the aggregate
level. To this end, we construct three measures: net migration flows, gross
inflows and gross outflows.

We aggregate the individual quality scores at the country level in 2019 to
calculate the initial stock of human capital. We then construct our measure
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Table 11: Migrants comparative quality in the destinations

(1) (2) (3) (4) (5)
Above median

score in destination
Above median

score in destination
Above median

score in destination
Above median

score in destination
Above median

score in destination

Panel A:
Migrated 0.3937***

(0.0091)
Up migration
(productivity)

0.3469***
(0.0079)

Down migration
(productivity)

0.4332***
(0.0134)

Up migration
(GDP per capita)

0.3284***
(0.0151)

Down migration
(GDP per capita)

0.3851***
(0.0155)

Observations 1,560,104 1,553,869 1,553,869 1,560,104 1,560,104
Pseudo R2 0.0050 0.0033 0.0034 0.0025 0.0025

(1) (2) (3) (4) (5)
∆ quartile

individual score
∆ quartile

individual score
∆ quartile

individual score
∆ quartile

individual score
∆ quartile

individual score

Panel B:
Migrated -0.0496***

(0.0125)
Up migration
(productivity)

-0.1224***
(0.0121)

Down migration
(productivity)

0.0561***
(0.0192)

Up migration
(GDP per capita)

-0.1449***
(0.0201)

Down migration
(GDP per capita)

0.0039
(0.0168)

Observations 1,566,039 1,553,926 1,553,926 1,566,039 1,566,039
R-squared 0.4388 0.1012 0.0714 0.4438 0.4346

Destination city FE X X X X X
Number migrants 97,438 52,256 37,763 22,913 14,403

Notes: The dependent variable in panel A is an indicator variable that is equal to one if an individual has a higher quality score than the average
user in the destination location. In panel B the dependent variable is the difference of individuals’ quality score quartiles between their location
in 2019 and their location in 2021, calculated according to the distribution of quality scores in 2019 in both locations. Explanatory variables are:
Migration - a dummy for migration; Up migration a dummy if migration takes place to a location with higher productivity or to a country with
higher GDP per capita; Down migration a dummy if migration takes place to a location with lower productivity or a country with lower GDP
per capita. The individual quality score is based on the centrality of the individual in the follower network. All specifications in panel A are
estimated by PPML, in panel B by OLS. The fixed effects employed in each regression are marked in the table. Standard errors are clustered at
the level of origin cities. * (**) (***) indicates significance at the 10 (5) (1) percent level.

of gross inflow, as the sum of scores of individuals who migrated to a coun-
try in 2021. Equivalently, we calculate the measure of gross outflow as the
sum of scores of migrants leaving the country. We divide both the inflow
and the outflow measure by the initial stock of human capital we calculated
for 2019, to express them in relative terms. Net migration is constructed as
the ratio of the stock of human capital in 2021, over the initial stock in 2019.
In Table 12 we regress these measures on GDP per capita. To reduce the
noise in this regression, we drop countries that have less than 20 users in
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Table 12: Migration flows at the country level

(1) (2) (3)
Net migration Out-migration In-migration

Panel A:
Log GDP per capita 0.0213* 0.0128** 0.0323**

(0.0115) (0.0055) (0.0129)
Observations 146 146 146
R-squared 0.0177 0.0269 0.0442

Panel B:
Log GDP per capita 0.0327*** -0.0042 0.0250***

(0.0075) (0.0060) (0.0082)

Observations 108 108 108
R-squared 0.1053 0.0037 0.1028

Notes: In Panel A we require countries to have more than 20 GitHub users.
For the outcomes net migration and in-migration 13 countries, and for out-
migration 14 countries do not meet this condition. In Panel B we restrict the
sample to countries with more than 150 users. Standard errors are robust. *
(**) (***) indicates significance at the 10 (5) (1) percent level.

2019 in panel A. In panel B we increase the threshold to at least 150 users.
The results show that countries with higher GDP per capita experience

positive net migration. This appears to be driven by larger inflows, indi-
cated by the positive coefficients in both panels in the third column, which
are larger than the coefficients for outflows in the second column. The small
positive coefficient for out-migration becomes insignificant for the specifi-
cation in panel B. We think, however, that the tentatively positive coefficient
on out-migration makes intuitively sense, indicating that there is stronger
movement in both directions in higher income countries. This resembles
a setting in which software developers from high income countries might
migrate to other high income countries, and software developers from low
income countries tend to migrate strictly upwards. The results confirm our
conjecture based on the individual level regressions that wealthier countries
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are attracting talent, while poorer countries are loosing talent.

7 Conclusions

In this paper we bring new empirical evidence to the debate on the role
high-skilled tradable services play in economies around the world, and for
the development process of low-income countries.

We study the software development industry, specifically the large and
commercially important sector of open source development, by utilizing
detailed data at the level of individual software developer. Our main con-
tribution is the estimation of productivity levels in 5,400 locations around
the world. Our results show that there are large differences in productivity
levels within and across countries, which are indicative of human capital
differences across space. We find that the productivity gaps between the
richest and poorest countries in software development are somewhat larger
than for the broadly defined manufacturing and services sectors. Devel-
oping countries are seemingly not able to leverage the fact that transporta-
tion costs are near zero to generate exports, likely because of information
frictions that are captured in the sizable distance elasticities we measure.
Moreover, we find evidence of ”brain drain” – that is, a sorting pattern in
which the best software developers from less developed countries or cities
with low levels of productivity move to more productive locations. This
exacerbates existing differences.

These findings present a rather bleak picture for low-income countries.
Nevertheless, there are some locations in developing countries, such as Ben-
galuru, which have very high productivity levels and are ranked among
the global leaders. Understanding the evolution of the ICT sector in these
places can provide valuable lessons for other locations in developing coun-
tries on how to boost productivity in this sector.

There are a number of important questions that require further attention.
Follow-up research should, for example, investigate the role of agglomera-
tion effects in the software development sector. Another important ques-
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tion pertains to the potential knowledge spillovers from emigrating soft-
ware developers back to their origin locations, and whether these spillovers
might offset human capital losses from brain drain over the long term. The
challenges in tackling these questions involve utilizing a solid identification
strategy based on plausibly exogenous shocks, and, in this connection, the
need for a longer time horizon. Despite the fact that GitHub has existed as
a platform since 2008, the user base was comparatively small in the early
periods, such that the utilization of a longer time horizon comes with the
trade-off of a much smaller sample size. We believe that it will be possi-
ble to answer these questions credibly as more data become available to
researchers.
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Appendix

A Additional data description

A.1 Spatial data

We employ a number of supplementary data sources, which we combine
with our main data by spatial proximity.

Locations We use shape files from the Global Human Settlements Func-
tional Urban Areas dataset, which identifies metropolitan areas and their
surrounding commuting zones around the world. The methodology of cre-
ating these functional urban areas (FUAs) is laid out in Moreno-Monroy,
Schiavina, and Veneri (2021).17 We map GitHub users based on their geoco-
ordinates to the FUAs. To capture less densely populated areas as well, we
then group together users that fall outside the borders of FUAs and assign
them to the admin-2 region they are located in. Shapefiles for administrative
borders come from the Database of Global Administrative Areas (GADM).
In the remaining paper we use the terms locations and cities interchange-
ably. We drop locations with less than 10 unique users to avoid calculating
very noisy aggregate measures at the location level. The top 20 locations
in terms of the number of users are displayed in Table A3. We arrive at a
final sample of 5,424 locations in 179 countries. We map all our other data
sources into these geographic areas; Figure C2 provides a visual example of
this approach for nighttime luminosity, GitHub users and FUAs.

Population We extract population numbers for the locations we consider
from the Global Human Settlements population grid, which is a spatial
raster that depicts the distribution of the residential population. We utilize
the grid at a resolution of 1 kilometer; each cell has a value for the predicted

17For some countries alternative definitions of urban areas are available – for example,
the Metropolitan Statistical Areas or Commuting Zones for the US – but such maps are not
available for all countries and approaches may differ across countries.
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number of people living in that area. The construction of the raster is ex-
plained in Freire, MacManus, Pesaresi, Doxsey-Whitfield, and Mills (2016).
We overlay that raster with the FUA and admin-2 borders shape files to
extract the sum of population at our level of observation.

Nightlights We obtain nighttime luminosity by overlaying a spatial raster
of nighttime luminosity provided by the Earth Observation Group with our
FUA and admin-2 border shape files. We utilize the V2.1 annual version of
VIIRS to extract the average sum of nocturnal light omitted at the location
level. This version of nighttime data has the advantage that it is not top
coded, making cross-country comparisons of cities with potentially strongly
diverging luminosity levels more precise.

A.2 Income data

We are interested in relating the differences we measure in human capital
across space to income differences. We do so at the level of FUAs for the
United States, and globally at the country level.

American Community Survey (ACS) We use the ACS data provided by
Ruggles, Flood, Goeken, Schouweiler, and Sobek (2022) to construct wages
at the level of Public Use Microdata Areas (PUMAs), which are the small-
est identifiable geographic unit in that dataset. They are non-overlapping
statistical areas containing no fewer than 100,000 people each. Given that
FUAs do not exactly align with PUMAs, we intersect them, and re-weight
the average wages thus obtained. We calculate the weights as follows:

Weightp,F =
Share intersected areap,F ∗ Populationp

PopulationP,F
, (8)

where the index p depicts the individual PUMA, F the FUA it is intersecting
with, and P, F all PUMAs intersecting with the same FUA. Figure C3 in the
Appendix visualizes the intersection of PUMAs and FUAs.
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We use occupational information to identify individuals who are em-
ployed in software-related occupations. We identify 14 such occupations,
which are listed in Table A2. We have also extended the list by including
a broader list of occupations that may require software development skills,
such as economist and physicist. This extended list yielded similar results.
However, we believe a stricter definition is more appropriate because the
fraction of economists engaged in software development is unlikely to be
high and this is not their main activity.

Software developer wages We are not aware of any global administrative
database on the earnings of software developers. For this reason we utilize
data from a survey conducted by Stack Overflow, which is a question-and-
answer website for programmers and has over 20 million registered users.
Every year Stack Overflow conducts a survey among its users on various is-
sues related to their professional activity including their salaries. We use
the 2023 Developer Survey since it has broader coverage compared to pre-
vious years. Ninety thousand developers from 87 countries responded to
the survey. We drop survey responses from users who stated something
other than being a software developer by profession or programmer as part
of their work, in order to focus on the earnings of IT professionals. Of this
sub-sample the number of respondents with non-missing wage income re-
sponses ranges from 16409 in the US to 12 in Senegal, Kuwait and Bahrain.
The country with the median number of observations has 135 respondents.
We winzorise the wages at the 99% level to reduce the impact of outliers,
in particular in the small sample countries. Clearly, this survey comes with
limitations but we believe that a comparison of our estimated productiv-
ity measure with wages from a survey from a different source is a useful
exercise that can potentially support the validity of our estimates.

WDI We obtain GDP per capita in constant 2015 US dollars for the years
2019 and 2021 at the country level. We merge this information to our re-
maining data by 3-letter country codes. From this source we also obtain
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data for value added per worker for the industry and services sectors.

A.3 Representativeness

In the following paragraphs, we provide a more detailed discussion of the
representativeness of our sample, given that we are able to map only a sub-
sample of users accurately into locations. We refer to information provided
in Section 2, which introduces the users and commits data, along with the
individual quality scores generated through Approach 2 outlined in Section
4.2.

We require the information of users location to attribute commits, which
form the basis of the trade flows we construct, to locations. Our dataset
comprises 218,848,238 commits from users whose locations were accurately
identified following our data cleaning procedures. Additionally, we iden-
tify 380,053,481 commits from users without location information. While
this constitutes a share of 36.5%, it is noteworthy that users with location in-
formation are far more active; They average 82.6 commits compared to 12.1
commits for users lacking location details. To address the potential skew
in commit volume caused by less meaningful commits from users with in-
complete profiles, we compute a quality-adjusted share by weighting each
commit with the respective user’s individual quality score. Consequently,
when adjusting for quality scores, we are able to attribute 67.4% of the com-
mit volume to specific locations. Notably, our gravity estimations using raw
commit counts and quality adjusted commits deliver similar results (see
columns (1) and (5) of Table 2). The fact that there is a large difference in the
covered share of commit volume between both approaches, yet the gravity
estimation results being close to each other suggests that it is unlikely that
there are systematic patterns in terms of not reporting location information.
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Table A1: Share of local connections by team size

Team size Observations Local share

2-5 269,053 0.598
6-20 152,971 0.492

21-100 80,064 0.406
>100 83,041 0.158

Notes: This table shows the average share of local connections across

projects of a given size team. A connection is an undirected link between

two users.

Table A2: IT occupations

Code Description
1005 Computer and information research scientists
1006 Computer systems analysts
1007 Information security analysts
1010 Computer programmers
1021 Software developers
1022 Software quality assurance analysts and testers
1031 Web developers
1032 Web and digital interface designers
1050 Computer support specialists
1065 Database administrators and architects
1105 Network and computer systems administrators
1106 Computer network architects
1108 Computer occupations, all other
1240 Other mathematical science occupations

Notes: This table presents the list of occupations in the ACS, which we classify as
IT-related. The first column displays occupation codes according to variable occ.
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Table A3: City user counts

Location User count Location User count

1 San Jose 101,242 11 Toronto 33,329
2 New York 79,778 12 Guangzhou 32,560
3 London 64,576 13 São Paulo 32,339
4 Bengaluru 62,438 14 Moscos 32,066
5 Beijing 60,909 15 Tokyo 30,909
6 Seattle 46,213 16 Boston 29,773
7 Los Angeles 42,568 17 Chicago 28,983
8 Shanghai 39,951 18 Berlin 23,813
9 Delhi [New Delhi] 38,054 19 Pube 23,221

10 Paris 34,714 20 Seoul 22,137
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B Location productivity measures from importer fixed ef-

fects

Here we describe a specification in which we recover city-specific produc-
tivities from importer fixed effects. In this case we no longer assume that
software developers supply labor at a constant marginal disutility. Instead
following the conventional model we assume that software developers (work-
ers) supply labor at wage wi at importing location i. Then the productivity
at the city level is given by:

Ti =

(
FEi

FESJ

)(
wi

wSJ

)θ

(9)

where subscript SJ denotes San Jose, which we use for normalization.
Following Waugh (2010) we set θ = 0.18. Because IT specialists’ wage data
is not globally available at the location level, we construct an approxima-
tion utilizing both the ACS and Stack Overflow survey data. To this end,
we regress population numbers on average hourly wages for US cities from
the ACS data to establish a relation between city size and software develop-
ers’ average wages. We then estimate country level average hourly wages
of software developers by dividing the Stack Overflow country level aver-
age yearly compensation of software developers by the average number of
hours worked by these IT specialists also from the ACS data, implying that
the number of hours worked are uniform across countries. Further assum-
ing that the city-size and wage relationship is constant across countries, we
calculate the location level wages as:

wi = βACS ∗ popi + wc (10)

where wc is the country level wage component from the Stack Overflow
survey data, βACS the coefficient from the wage and city size regression and
popi the population size of city i.

Figure B1 presents a scatter plot of our productivity estimates based on
exporter fixed effects against the one based on importer fixed effects with
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Figure B1: Correlation of productivity measure from importer and exporter
FE

Correlation coefficient: = 0.9061
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wages. There is a tight fit between both measures with a correlation coeffi-
cient of 0.9. Note that the sample is restricted to locations for which both an
importer and exporter fixed effect can be derived and to countries for which
we have data from the Stack Overflow survey.
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C Additional figures
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Figure C4: Bilateral migration flows
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Notes: The figure presents bilateral migration flows between origin countries on the
left side and destination countries on the right side. We selected all countries that
send at least one flow of 200 or more migrants. For the largest individual flows the
numbers in black represent the size of the flow. The numbers in brackets behind the
country codes signal the total amount of migrants send or received by a country.
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